泊松方程
**泊松方程**
1. **基本定义**
泊松方程是二阶椭圆型偏微分方程,形式为
\[
\nabla^2 u = f(x),
\]
其中 \(\nabla^2\) 是拉普拉斯算子(对空间变量求二阶偏导之和),\(u\) 是未知函数,\(f(x)\) 是已知函数(通常表示源项或汇项)。当 \(f=0\) 时,方程退化为拉普拉斯方程 \(\nabla^2 u = 0\)。
2. **物理背景与意义**
泊松方程常见于描述有源的稳定场分布。例如:
- **静电学**:电势 \(
2025-10-25 22:51:08
0